这套技术可以看到,我们之前说光伏建筑BIPV要做哪些专业的交叉,有建筑、有结构,有电气、机械,通过这个项目完全把建筑暖空,把自动化都结合在一起了。通风是有策略性的,不是想开就开,有关就关,具体是什么时候开关不是通过人的感官,有一个计算机的软件来模拟。通过模拟和现场测试,多种方法来通过自动化的手段实现它的开闭,完全通风量的增加,而且保证室内人的舒适度。现场做了很多样板,做了好多种窗板,做了玻璃,同时也完成了各种试验。比如说有建筑领域的实行实验,有建筑领域的通风实验。
接下来讲一下另外一部分的光伏,就是入口。同样使用单波的组件,透明的组件,把一个光伏雨棚的功能分开来了。我们见到的双玻光伏雨棚非常多,整个雨棚安全性,抗冲击性、遮阳性、避雨性都是在一起的。下面用折叠形式的抹煞玻璃,杂交抹煞玻璃来做下层,做成一个非常有艺术特点双层结构的雨棚,既把功能分开,又美观。我们还把这个雨棚的电用在哪个地方呢,为了在在极端情况下,通风做不好的情况下,怎么实现空调的设计,我们就了一个工业的吊扇,6米1和6米3两种,风俗是人体非常舒服的,非常大的一个空调,转起来非常缓慢。这种风扇是要用能,用雨棚发的电来实时的吊扇相结合。当太阳大的时候自然需要有吊扇的功率,太阳小的时候不需要发电的时候自然不需要这个功率。太阳能发电跟人体的需要,跟设备的需要。屋面是绿化的设计,既不是常见的普通3.2毫米的普通光伏组件来做,看似很多车棚一样,实际上这是不满足标准的,有人通过的地方都要做安全玻璃,首先厚度可能不适合,所以在做这个的时候打破了“6+6”,避免成本增加,同时用单玻。这个叫做钢球落球实验,这个冲击是做在单玻组件上,结构跟其他是一样的,还有一种软物冲击。两种实验都可以完全满足玻璃的抗冲击能力,正面和背面都可以冲击,所以它是满足建筑所需要的这些要求的。
刚刚提到结构安全性,365度风吹的情况实现我们去职,证明这个项目何在曲直既不是保守,也不是地面标准的不保守,为什么要做三种,这个光伏组件有长宽的,我们可以纵向排列,也可以横向排列,但是无论怎样排列多要考虑安全的,可以清晰的通道和维护的通道。一个完美的系统如果要没有一个完美的构建系统是没有办法实现的,构件的设计还是经过考量的。标准组件不安全,尺寸不能定植,美观也有问题,双玻组件,满足建筑结构的双玻组件,重点更是考验这个部分支架的一个问题,所以就选择了单玻透明,也含量了他的成本,怎么算出来8.8元每瓦系统增量,这个组件通常报价,风格按照铸坚固之间来平分,这个项目有15种不同尺寸的组件,如果是一个标准尺寸的可能会低很多,在仅仅10块钱的情况下。有一个报告已经公开了,一个组件可能在25年有衰减,衰减主要的原因全世界没有一个科学家能够量化,能够科学的说清楚它有衰减,但是有一个定性的说法,衰减起来有两个主要的方面,这个组件生产出来一直到用的期间可能会承受各种外力,尤其是在运行的时候要承受更多的何在,更多的雨水浸湿,造成电磁在外力的情况下很薄,会产生肉眼看不见的裂纹,产生的时候对效率影响是非常小的。因为并不影响电流通过,可是在水、湿气,极低极高的情况下就会有效率的衰减,所以引力对电磁片的功率一定有衰减,影响只能随着时间的增强而增量,这是可以定量的说法,半导体本身另期间的衰减,为什么会衰减,如果我们去西部电站,或者已经建成的电站,愿意派一下就会发现所有电站的电磁片都有或多或少的隐裂的情况。我们要论证隐裂对电池造成什么样的影响,还有到2.0版本的时候再进行研究,目前这是我研究的一半结果。到了实验室要做最大公里和绝缘耐压的测试,做完以后安装组件,再经历幕墙所需要的极端抗压性能,承受了所有利的何在以后拆下来再做一个测试,做完以后可以看到,这个步骤是一次性做完的。分了四轮,把不同的何在对应的不同变形一次做下来。我想论证的是,在兼硃重的,对效率越没有利,还是说更应该严格一些,让隐裂更严格一些。我的的实验没有完全的完成,我需要在下一步把这个答案说出来。这个就是我拍出来的隐裂纹,上面有很多的红圈,没有承受何在一直到呈现最大何在,最多有五片以上的隐裂。有这么多的隐裂,但是IV区县甚至有增加的情况。什么原因呢?隐裂刚产生的时候对我们的功率是没有任何的影响的,所以我们不能用隐裂来直接判断组件衰减情况,或者说它的合格情况,我们认为还必须做一个实验,在做IV之前经过环境,受了强压以后再受极端的混淆,这该论证了整个建筑师在建筑组件浓缩到十几天的时间内的一个环境的变化,我们认为我们做了一些测试,但还没有系统的测试,做完以后效衰减超过了10%,我们觉得这个系统设计是不太符合的。如果出来以后,将来可能会影响到标准。刚刚讲到建筑从头到尾的光伏,对我们这样的企业,做不同的建筑一体化形式,是我们的一个研究重点。更重要的是我们要用不同的应用方式,应用光伏电的形式,机遇办公楼建筑的一个重要符合断的微网系统,是交流式的。同时在整个用电领域有一个最时髦的研究就是光伏直流电,直流微网,让我们的手机、计算器、PC都可以用直流直接使用。这个项目可以把所有光伏应用全部展示和应用一遍,整个电源是平衡的,对外网的影响更少,对用电设备的保护,这就是我们的微网系统。我们要研究的,我们现在是在海岛城,现在要应用到建筑当中,涉及到反反复复谈到的增量成本,既然这个项目有光伏了,必须要做,因为有柴油机,这么大的项目必须有在北,计算机是一个数据中心,云系统里会有一个CPU,这个项目里面既有发力单元,有储能单元,这一个设备的增加就形成了基于智能微网。客户结构就是折算,有意思是我们把类似于雇佣光伏直流放到下面,多出来的电还可以往网上送,也是一个用电单元,负责直流这边不够用还可以。
我们下一步就不这么做了,要做直流设备,所有的设备都要做直流的,我们的建筑就是一个插口,就像建筑可以移动一样,走在哪里就可以插在电网上。我们现在在船上,或者是远离大陆的地方。在完成了海岛的必要电力,做微电网项目的研究和应用基础上,把微网的推广从第一步走到了第三步。即便是这样一个系统完成了22份报告,从所有的幕墙的采光,自然的通风,遮阳,光伏做的背景,各个窗口的形式,通风气的形式非常多的模拟来论证出这其实是一个非常高端的科研系统。
最后把刚刚说的节能、产能、用能结合到这个平台上,这也是一个专利技术。最后说一下技术指标,刚才非常自豪的告诉大家这是一个触到很低的超低能耗技术,每平年每年用到了,这个数据带来的影响是什么。我想说的是,超过2万平米叫做超大型公共建筑,在广东省这个数据是150,我要做的是52.4,把这个数据拉迪了一半,如果实现这个指标是非常值得期待和推广的,而且在进来的2030年可再生能源占到能耗的14.4%,替代率这么高来自两个方面,一个是太阳能极可能的利用,能耗通过极高的手段降低它比如说空调降低到20,我们把空调的能耗降低15%,这个技术指标是很值得期待的。做一个可再生能源建筑的话必须做能源平衡,用电量空调照明等等,使用用电量是一个总星图,我们做了一个如实的光伏发电的替代统计,在光伏完全满足建筑使用,甚至超过这个区间达到了100多个小时,全年已经有8000多个小时,光伏形成了这样一个区县,在冬季的时候替代率是非常高的。整个建筑的用电,包括设备,这些计算机全部都包括,一瓦不到20块钱,如果有经验数据的知道,我们做微网,在这样的项目当中,太阳能发电是必然的,如何把它更高的发电,而且更多的应用,这个也是将来更必须要探索的一个途径。谢谢大家。
章放:感谢罗多女士。下面有请乐凯胶片股份有限公司研究所所长柳青女士演讲,大家欢迎。
柳青:各位嘉宾,大家下午好。大家知道,乐凯公司是光伏组件相关材料的生产制造企业,今天我和大家交流的题目是背板材料对光伏电站收益的影响。交流的内容包括六个方面,首先看一下影响光伏电站主要的收益因素。总结起来包括三个方面。第一,电站所处地方环境,这里面主要包括光照强度、温度、天气状况和安装角度,对于电站的承包商是比较熟悉的。第二个方面,光伏组件的质量。包括组件的寿命、功率衰减、可靠性。第三个方面,系统的效率以及电站的运维。
我重点讲一下组件质量对于光伏电站投资汇报的影响。这里有两组数据和大家分享。我们以一个20兆瓦的西部电站为例,第一组数据,在年功率衰减28%的情况下,如果电站的组件能够使用25年,电站的内部收益率能够达到11.39%。但是在同样的情况下,如果说组件的使用年限只有10年,收益率只有4.89%,也就是说25年和10年的投资回报就会相差6.5个百分点,这个差异是巨大的。第二组数据,在同样的15年限下,比如都是25年,一个组件如果是0.8%的功率衰减,它的收益率就是刚才所讲到的11.39%,如果功率衰减是5%的话,收益率就会降到2.02%,这个之间就会产生9.4个百分点的巨大的差异。因此,组件的使用年限和年功率衰减对于光伏电站的投资回报影响是巨大的。
第二个方面,我们看一下,哪些因素影响了电池组件的质量。一般认为,包括这样两个方面。第一个是组件所采用的原材料的质量。第二个方面组本身的制作工艺。右边这张图统计的组件在户外使用过程当中外观缺陷的一组统计数据。同这张图上可以看到,由于背板发黄带来组件缺陷的比例占到35.6%亿背板开裂占到6.4%,和背板相关的问题占到了42%的比例目前,这个比例还是很大的。同时旱代的腐蚀。系统开发商采取了一系列措施。比如说现在要求组件都要通过IEC的测试认证,但是现在的问题是,IEC的测试还不能完全模拟户外实际25年以上使用环境的老化条件。第二个方面,可能会大部分采用大厂的组件,因为它的质量保证会比一些小厂有保障得多。但是现在对户外电站检测的结果看大厂的组件也没能完全避免掉这些质量隐患。第三个方面,组件的质保。现在也并不是一个完全有效的风险管理工具。因此,我们的观点是,从根本上降低质量风险的最根本的根源在于组件材料厂家是否有深厚的研发实力,完善的支撑管理和严格的品质控制。
看一下背板在组件中的作用。在座的各位专家都比较清楚,背板是保护光伏组件的一个关键的部件,它是将电池片和大气环境隔离,为组件提供一个绝缘的保护,同时耐受各种环境因素的影响,对组件户外运行的可靠性和寿命都非常的重要。不同的环境以及不同的应用条件,对于背板的要求一定是不同的。因为在不同的气候条件和应用条件下,组件的工作环境特点差异很大。比如说在我国的西部和北部地区,气候特点是紫外线强、温差大,在东部和南部特点是温度高,湿度大,温湿热气候持续时间长。沿海地区明显的特点就是湿热,是盐碱性气候。不同的应用条件,比如安装在屋顶,很多嘉宾说到分布式电站,很多涉及到屋顶安装,最大的特点就是组件的工作温度高。如果是余光互补的电站工作环境湿度大。对农业大棚来讲,它的特点就是化学成分非常复杂。在这儿有两个具体的例子。比如说一个组件在荒漠的地区工作25年,组件正面所接受的紫外线的剂量会达到2293万千瓦时,在温和地区接受的紫外线剂量是1230万千瓦时,这个数据差异是比较大的,在沙粒地面的电站接收到紫外线反射率是12%,水面对于紫外线的反射率是8%。这样计算下来,在我们有些应用条件,在有些应用地区,组件接收到紫外线的剂量比通常测试所使用的10-100千瓦时的剂量要高得多,有些IEC的认证,或者其他的测试,为什么不能完全模拟户外的实际的使用条件。
第二个例子是不的安装条件所带来的组件工作条件环境的影响。我们通常所见到的地面电站,组件的工作温度比自然的环境温度会高15度。如果是用于屋顶的安装,这里面讲是平面屋顶,有BITV的形式的话,比地面的工作温度又会高出15度。同样,大家讲到很多的PITV,如果是有这种安装方式的话,这个又会比BATV高很多。如果自然环境的温度是25度,组件的工作温度在BITV的安装情况下会达到60度以上。如果安装屋顶的话,高温是它的一个特点。
在不同的环境和应用条件下,背板材料对它的要求性能特点显然是不同的。比如在西部和北部,要求背板要具有耐自外、耐模,和耐高低温的特点。在东部和南部,我们主要要求背板材料耐自外、耐湿热,沿海地区耐腐蚀,对于屋顶的安装,最大的要求是要求耐热、耐紫外。农业大棚除了耐紫外、耐湿以外还要耐化学腐蚀。大家都知道,背板材料其实是多种材料组装而成的,对于材料的选择和设计很大程度上了解决了背板的设计和性能。通过选择分子结构,通过设计不同的应用配方,以及不同的施工工艺,就会使胶黏剂的耐合性产生巨大的差异。
第二个方面是结构设计。在于一些温和的环境条件下,我们可以设计成耐厚层采用优质的薄膜材料,这样既能满足实际应用的需要,同时又可以降低成本。
第三个方面,对于背板功能针对性的设计。以现在一些普通背板为例,我们在一些环境条件比较好的情况下,我们把背板耐湿热的,耐紫外线设计到60千瓦时,对于余光互补电站所甬道的背板,我们就要把它设计成耐,水气组合要小于0.5,有独特性能的设计,才能有效延长组件的发电时间,从而提升电站的收益。
另外,从功能的设计方面讲,我们可以针对屋顶的分布式电站设计高阻燃的背板,阻燃结构材料的设计来实现,保证阻燃功能最大化。另外还有高绝缘背板,现在我们看到1500伏的背板已经大量的使用。高反射背板和高散热背板,这些都是通过提高光的利用效率,降低组件的工作温度,从而实现组件功率的增效。
最后简单介绍一下乐凯公司。乐凯胶片股份有限公司是隶属于中国航天科技集团公司,其前身是成立于1954年7月1日的电影胶片长,当前乐凯公司基本完成了产品和产业结构转型。在研发方面,我们有比较深厚的研发基础和实力。我们有三级研发体系,有院士团队,在生产制造方面,我们有多年沉淀的精密技术,有国际一流的生产线,以及完善的制成控制。在品质控制方面,我们的检实验室是有国家认证资质的实验室,我们内部部门作为独立的第三方对产品进行检测和把关。目前乐凯公司有三个系列,一个是F系列,第二个系列是K系列,第三个是T系列。
背板在电池组件中主要起到保护的作用,背板的质量对组件的使用寿命和功率的衰减都非常重要。对光伏电站的收益会产生重大的影响。电池组件的运行条件极为复杂,因此应该根据电池组件的具体运行环境来匹配相应性的特点。乐凯采用严格的质量标准和质量把控,为厂商提供优质的背板材料,为光伏系统提供长期的保障。我的报告内容就这么多,谢谢大家。