从计算结果看:
方案一锅炉不需要进行受热面大的改造,可以达到改造方案要求。
方案二锅炉侧主汽温度只有566℃,达不到改造要求,必须进行相应受热面改造。初步核算具体为加长高过管圈长度,面积增加约15%,大屏过热器长度增加500mm,面积增加约5%,同时在低过增加一圈管圈,面积增加20%。考虑原锅炉再热汽温裕度偏通过对高过、屏过、低过和中再、高再受热面进行必要的改造,小,再热器系统可缩小高再纵向节距,增加管圈数量,面积增加约700m2。
因受锅炉高度及宽度的限制,锅炉中无法再更多的受热面,计算后方案三的主汽温度为只可达到553℃,再热蒸汽温度为568℃,达不到改造要求,需要进行受热面改造,具体为过热器、再热器系统按方案二的方式进行。
从项目投资上看:
方案一相比来说锅炉侧投资少,只对中温再热器要进行改造。改造费用约350万,但通过计算对应的汽轮机热耗为7875kJ/kWh,相对于其他几种方案收效低,不进行考虑。
方案二改造范围主要是高温过热器、低温过热器、高温再热器(关于方案二,联系锅炉厂到现场收集资料并计算后认为通流改造后再热器入口温度会降低约10℃,因此将改造范围有所扩大,低温再热器及大屏过热器面积均需要增加),该方案虽改造范围大,但对应的设计热耗为7790kJ/kWh。收益也较明显。
方案三除了方案二中提到的改造范围外,由于提高蒸汽压力,涉及到多个集箱更换,配套阀门(安全阀、PVE阀等)也要进行更换,对应的设计热耗为7755kJ/kWh,相比于方案二,投资收益上较低,另外因受锅炉高度及宽度的限制,已经无法再增更多的受热面。因此方案三方案在实际改造中无法实施。
通过对以上几种方案进行可行性、投资、收益综合比较,确定按方案二进行改造,采用将主、再热温度分别提升至570/570℃,压力保持不变的方案,既在锅炉本体外部结构不做改变的情况下通过对高过、高再和低过等受热面进行必要的改造,实现提高锅炉主再热汽温、提升汽轮机做功能力、降低汽轮机热耗的目标。
改造范围:
3.1汽轮机本体部分:
汽轮机通流分部改造技术成熟,应用广泛。本次改造包括:更换高中压转子、低压转子、高中压外缸、高压内缸、低压内缸、调节级喷嘴、高中低压各级动叶及隔板、各段轴封体及轴封、低压进排汽分流环、高压主汽调节阀、中压联合汽阀,设计上增加了中压进汽隔热罩和中压进汽冷却管,取消了高压内缸疏水和高中压间汽封排放阀。高压缸由1+8级增加3级变为1+11级,中压缸增加1级变为8级。(2)
3.2锅炉本体部分:
.低温过热器改造在原基础上下部增加一组管圈,面积增加20%;大屏过热器延长管屏长度500mm,面积增加5%,出口段材质由12Cr1MoVG提升至SA-213MT91 ;后屏过热器出口段提升材料档次,材质由12Cr1MoVG提升至SA-213MT91;高温过热器延长后半管圈长度至水平烟道底部,管圈长度与前半管圈长度相同,面积增12%。高过全部更换,材质提升至SA-213T91。中温再热器面积不变,出口段提升材料档次。高温再热器管屏全部更换,管子规格由Φ60×4改为Φ63.5×4。面积增加了100m2。 对高过进口集箱、出口集箱、高再出口集箱进行升档更换,壁再出口集箱更换,规格由Φ457.2×25更换为φ457.2×30,材质不变。
为保证受热面管壁安全运行,配合机务增加受热面管屏壁温测点283点,修改相关报警定值及逻辑,保证受热面安全运行。
3.3发电机及主变部分:
在定、转子气隙中装设风区隔板,将全台定子槽楔更换为新型结构。更换高效新型大容量氢气冷却器,更换转子集电环。主变改造更换4台冷却器及冷却器控制箱。
3.4辅机及热力系统部分:
由于锅炉侧主再热汽温的提高,各系统管道压力、温度、流量发生改变。因此需要对四大管道、抽汽管道和阀门进行材质、压力和流量校核,不满足要求的进行更换,需要高低加、除氧器等压力容器制造厂家进行容器内部核算。安阳电厂2号机组改造辅机对再热蒸汽管道进行更换,材料由12Cr1MoV更换SA-335P91;对汽机侧、锅炉侧主再热蒸汽系统阀门进行更换,汽机侧包括主再热管道疏水、高低旁疏水、本体疏水管道及阀门,锅炉侧包括对过热器出口和再热器出口的安全阀、水压实验堵阀、对空排气阀;过热器出口的放空气阀、疏水阀、反冲洗阀、压力讯号阀等进行更换;高、低压旁路调节阀阀芯材质为12Cr1MoV,材质不满足改造后阀前565℃要求,更换高、低压旁路调节阀,材质为P91。
为了进一步进行节能挖潜,提高机组低负荷下的经济性,本次改造增设0号高压加热器。配套增加O段抽汽管道、给水管道及高加疏水管道及排水管道、阀门,配套需要对1号高加增加外壳改造增加疏水接口。低负荷段降低热耗率约23kJ/kWh。