(1)200MW机组。国产三缸三排汽200MW汽轮机组是根据前苏联同类机组设汁的,采用的是201计纪团年代初期的设计技术,日前在国内运行的200Mw汽轮机组已超过150台,是国内火电厂的主力机组,其高压缸效率为0.78一0.81,中压缸效率为0.9一0.91。国内机组与国外同类先进机组相比,高压缸效率低7%一10%,热耗高出约104.6kJ(/kw˙h);中压缸效率与先进水平差距较小,热耗高出约41.84kJ(/kw˙h);低压缸效率与先进水平差距较大,热耗高出约313.8kJ/(kw˙h)。
单从降低热耗,改造高、低压缸可获得更好的投入产出比,然而许多电厂从延长机组寿命、进一步降低机组热耗的原则,提出同时对高、中、低压缸实施改造,这样可使机组热耗更低,环境污染更小。目前国内200MW机组改造情况都很好,有的甚至超过预期。
(2)300MW机组。早期国产300MW汽轮机是由上海汽轮机公司(简称上汽)自行设计、生产的大型机组,该机组于1968年完成设计,1971年底试制成功。1974年9月首台投运,至1994年11月共生产投`运29台,分布在全国10个电厂。该机组为亚临界、一次中间再热、单轴、四缸四排汽凝汽式汽轮机,配用亚临界、中间再热直流锅炉(设计流量1025t/h),汽轮机进汽参数为16.18MPa,550℃,排汽压力为0.005MaP,采用四缸四排汽形式,包括高压单流、中压单流和2个双流低压缸。原型机组的高、中压缸均采用冲动式叶片,叶型选用原苏联20世纪50年代的叶型系列。高压叶片全部为直叶片,中压缸动叶为扭叶片。机组运行中出现的问题集中体现在以下几个方面:①机组经济性差,通流效率低,实际运行热耗约8373kJ/(kw˙h);②汽缸膨胀不畅及振动过大、叶片易发生断裂事故、调节易发生问题等;③机组的气动性能较差,安全可靠性和运行灵活性也无法满足机组运行的要求。针对以上问题,需要对该机组进行全面改造,以期改善机组性能,降低机组热耗。
例如某电厂的4台机组,改造效果按ASMEPTC6.0完成的热力性能试验证明,改造后高压缸效率89.1%,中压缸效率94.5%,低压缸效率87.3%。改造后性能指标为国内300MW在运机组的较高水平。
2.2空气预热器改造
漏风率过大使烟气温度水平降低,烟气与受热面间热交换变差,排烟温度升高;漏风还增大了烟气容积,其结果造成锅炉排烟热损失和引风机电耗都增大,降低锅炉运行的经济性。根据统计和计算,对于电站煤粉炉,一般炉膛漏风系数每增加0.1一0.2,排烟温度将升高3一8℃,锅炉效率降低0.2%一0.5%;漏风系数每增加0.1,将使送、引风机电耗增加2kw/MW电功率。
某些电厂空气放热器漏风情况已非常严重,如某电厂在改造前最高达到40%,各风机的设计裕量已全部用尽,已严重地影响了电厂的安全、经济运行。所以空气预热器改造是一项必要的技改工程。
2.3胶球清洗改造
2.3.1凝汽器的换热效率
早在20世纪60年代,国外对凝汽器的换热效率问题做过深入的研究并通过试验。SIEMENS公司对凝汽器管子结垢程度与效率之间关系的研究结论,其关系曲线如图l
所示图l中共4条曲线,生物积垢(mikorblologiseherbelag)曲线和无机硬质积垢(anorganiseherbelag)曲线。代表管子积垢厚度与污垢系数、清洁系数之间的关系,由这两条曲线可以看出,污垢层越厚,污垢系数越大,清洁系数越小。举例来说,当生物积垢达0.1mm,或无机硬质垢达1.2mm,污垢系数为0.2,而清洁系数仅为0.60。
图l中上部两条斜向右下方的曲线分别代表740Mw和1300Mw透平机组的污垢系数或清洁系数与机组效率损失的关系。当清洁系数为0.60(即当生物积垢达0.1mm,或无机硬质垢达1.2mm时),300MW机组效率下降达1.6%。