从当地条件和实测辐射数据可得:同固定倾纬度角安装相比,水平轴东西向跟踪的辐射量增益提高23.1%,主轴倾纬度角的斜单轴跟踪可以增加到32.3%,双轴全跟踪系统与固定倾角相比,辐射量增益达到36.9%。太阳跟踪器能够有效提高发电量,降低发电成本,是一个不争的事实,但为什么不能更广泛的推广使用呢?自动跟踪所增加的成本不是问题,大多数的斜单轴跟踪器的售价都在1.5 元/Wp 左右,甚至更低,比固定支架大约高0.5-0.7元/Wp,这与每年提高20%以上的发电量相比,最多2 年即可回收增加的成本。主要问题是可靠性,只要解决了可靠性问题,太阳跟踪器无疑将会得到大规模推广。
提高光伏系统性能指数
国际上对于光伏系统的性能指数已经有过很多年的研究,从数据看出,早年光伏系统的PR 平均值只有65%,近年的PR平均值提升到了74%,但很少有系统达到80%以上。
目前还没有“中国效率”。北京鉴衡认证中心等单位正在根据中国的光照条件研究制定符合实际工作情况下逆变器的“中国效率”。
IEC61724(光伏系统性能监测 - 测量、数据交换和分析导则)中提出了评价光伏发电系统性能的参数-性能指数(Performance Ratio,简称PR)。需要说明的是:1)光伏系统性能指数(PR)已经排除了太阳能资源的差异,真正反映了光伏系统的质量和效率,比如在西藏的一个光伏电站,年等效利用小时数高达1600 小时,而方阵面峰值日照时数为2000 小时,该系统的PR 等于80%;北京一套光伏系统年满发1200 小时,方阵面辐射量1400kWh/m2,则PR=86%,北京的光伏系统虽然总的发电小时数不如西藏的系统,但质量和能效显然高于西藏的系统。2)自动太阳跟踪器虽然可以提高发电量,降低发电成本,但并不能提高PR,因为分母的辐射量也提高了。3)PR 值并没有排除温度差异,不同的使用地点或不同的安装方式都会影响到光伏电池的工作温度,在热带地区和在寒冷地区工作的光伏系统,即使质量一致,热带地区光伏系统的PR 值也会偏低,为了客观比较电站性能,还需要做温度校正。PR 的影响因素很多,包括:系统的电器效率(组件串并联损失、逆变器效率、变压器效率、其它设备效率、温升损失、线路损失等)、组件衰降、遮挡情况、光反射损失、MPPT 误差、故障情况和运行维护水平等,暂不考虑测量误差和电网弃光的影响。
加州效率(CEC 效率):美国加州效率不但考虑了加州的光照条件,还考虑了光伏电池受温度的影响。光伏电池温度的影响主要表现在逆变器光伏阵列的输入电压,温度高时输入电压低,温度低时输入电压高。CEC 效率的测试条件如下:分別在“额定输入直流电压”、“最大输入直流电压”和“最小输入直流电压”三种条件下,个別记录其在额定最大输入功率的10%, 20%, 30%, 50%, 75%, 和100%六种条件下的18 个转换效率。其中转换效率= 输出功率/ 输入功率X100% 。加州效率有“最高效率”、“平均效率”和“加权效率”,加权效率不考虑温度影响,只考虑了光照条件,可以与“欧洲效率”对比;最高效率即是常规逆变器标注的最高效率;平均效率即考虑了光照条件,也考虑了环境温度的影响。
三种加州效率的定义如下:峰值效率 (Peak Efficiency): 指上述18 个转换效率中最高的效率;标称平均效率 (Nominal Average Efficiency): 指三种输入直流电在50%, 75%, 和100% 的输入功率下所记录下共9 个转换效率的平均值;
CEC 加权效率(Weighted Efficiency):考虑了一天当中光照条件的变化。依据直流输入最大功率的10%, 20%, 30%, 50%, 75% 和100%六种条件下,以权重值分別为4%, 5%, 12%, 21%, 53% 和5% 的分配所计算出的加权效率值。
如果光伏部件或工程的质量控制不力,则故障检修损失将会明显提高,甚至超过10%,因此严格质量控制是降低故障检修损失的重要前提。弃光(包括延迟接入和限发)现象目前已经在西部大型光伏电站出现,随着光伏与电网规划建设同步,这一问题将会得到解决。
为了得到光伏系统的性能指数(PR),从而准确评估光伏电站或分布式光伏的质量和能效,高质量的数据监测和数据采集系统是必要的。本文所采用的数据,包括太阳跟踪器的增益,光伏系统不同安装方式的温度损失,以及光伏电站PR值等,均采用国外数据。之所以如此也是迫于无奈,很难找到国内的完整数据。
因此,数据采集和监测对于电站评估和技术改进是非常重要的,也代表了光伏电站建设的成熟程度。光伏项目所安装的数据采集和监测系统所监测和采集的数据、采样精度、采样周期和监测时段均应符合GB/T20513(IEC61724)“光伏系统数据监测、测量、数据交换和分析导则”标准的要求。(作者为国家发改委能源研究所研究员)