半桥电路的驱动方式主要包括独立式PWM驱动与统一PWM驱动方式,与独立式PWM驱动方式相比,统一PWM驱动方式始终保持半桥电路上下两桥臂的驱动信号互补,通过控制电感电流方向控制能量的流向,切换双向DC/DC变换器的工作状态,不需要相应的切换电路,控制容易,能够实现双向DC/DC变换器的双向工作的统一控制,且能够实现开关管的零电压开通。其中开关管实现软开关需要满足电感电流过,互补PWM驱动方式能够保证电感电流过零,避免了普通DCM模式下主电感与输出电容之间的谐振产生的振铃现象。图4为驱动信号与电感电流的波形示意图。
首先,当在t1-t2时间段内上管门极信号使能,S1导通,S2关断,电感电流线性上升,t2-t3时间段内,此时间段被驱动信号死区时间内,上下桥臂开关管均没有驱动信号,此时电感电流使开关管寄生电容C1充电,C2放电,C1的充电减缓了开关管S1两端电压的上升,从而减少了关断损耗。当C2完全放电时,此时Vce2为0,此时电流电流会通过D2构成回路,当驱动信号来临时,开关管S2工作在零电压状态。t3-t5时间段内在超级电容电压作用下,电感电流线性下降直到过零,过零后开关管S2导通,则D2在关断在零电压条件下,反向恢复损耗为零,同时避免了振铃现象。当S2关断信号来临时,即进入死区时间内,同上,C2充电,C1放电,当完全充放电完成时,电感电流流过D1,此时开关管S1工作在零电压开通条件下,同时也减少了S2的开关损耗。以上为电路工作在buck状态下的分析,对于boost同样适用,上下管工作在零电压开通条件下,并使二极管D1的反向恢复损耗为零,寄生振铃现象得到抑制。从而实现了ZVRT。
3. 双向变换器模型建立及控制器设计
由于双向DC/DC变换器中存在开关器件(IGBT)和二极管这样的非线性器件,为非线性系统,但是在系统稳态的情况下,系统小信号扰动之间存在线性关系,因此,非线性系统可以通过系统的小信号模型的线性关系来近似等效,为分析系统的稳定性及动态特性。
a) Buck方式下的模型
双向变换器工作于buck方式下时的电路图如5所示,其中LR为电感等效内阻,csR、cpR分别为超级电容的等效串联电阻与等效并联电阻。