4) 能不能经受各种滥用?
当产品销量足够大的时候,产品的使用,总有超过规定极限的情况或一些意外的情况,这是不可避免的。以手机为例,当充电保护失效的时候,手机电池可能因为过充而起火或爆炸。如果手机电池被尖利的金属穿刺,也有可能发生爆炸。
那么,电动汽车的动力电池系统能够经受类似的滥用考验,不造成安全事故吗?这些滥用的情况,既有人为造成的,也有客观环境造成的。
5) 电池管理系统失效了怎么办?
动力电池系统有一套复杂的管理和控制系统,时刻采集整个动力电池包的各种运行参数,进行计算、诊断、通信和开关控制。系统越智能化,当其发生故障时,后果也就越严重。
举个例子,如果动力电池包内部的某个电芯过热,热管理系统失效,电芯存在热失控的风险,而这个时候的温度传感器坏了怎么办?软件程序不能正常判断并下发切断指令怎么办?又或者本该执行断开动作的开关,不能正常的断开怎么办?风险是否会蔓延,并造成严重的安全事故?
三、 动力电池安全设计的目标
动力电池系统的安全设计,基本上围绕以上提到的内部组件构成和可能发生的安全风险展开,确定合理的目标和框架,指导具体的产品开发工作。
1) 化学安全
电芯发生热失控,可能会产生电解液泄漏、起火和燃烧等现象,但其破坏力是远远不能与炸药相比的。炸药爆炸时,能量在极短的时间内释放出来,所以威力巨大,而电芯的热失控,其能量的释放是一个渐进的过程,加上电动汽车的电池包是由很多个电芯串并联组成的,通常仅有1个或几个电芯发生故障,有足够的预警和处置时间。
针对电芯而言,如何确保各种运行条件和使用情况下的化学和热稳定性,确保不产生安全风险,这是必须要考虑和解决的问题。需要考虑的情况包括:
额定范围内的正常工况
长距离运输和长时间存储
极端情况,如针对电芯的过充、过放、挤压、穿刺、火烧等
在各种情况下,都要为电芯的安全性确定合理的设计目标,贯穿到电芯的开发过程中。
针对动力电池系统的其他组件而言,化学安全还涉及到电解液或冷却液泄漏所导致的化学腐蚀(有可能造成内部短路)、盐雾腐蚀、阻燃、和有害气体排放等。
2) 电气安全
针对动力电池包内部的电子电气系统而言,电气安全是首要考虑的因素,各种与“电”有关的安全风险,都必须考虑到:
绝缘配合
等电位(接地)
短路防护
绝缘状态监控
高压连接器互锁
高低压隔离
电磁兼容性(EMC)
故障自诊断
电气安全,不仅要考虑被动防护,如各种线缆和连接器的绝缘保护,高低压连接器的闭锁装置,以及良好的电磁兼容性等,还需要考虑如何做到故障的自诊断和主动防护,如绝缘状态监控、高压互锁检测、接触阻抗检测等,确保在故障发生的初期就主动介入,将风险降到最低。
3) 机械安全
机械安全主要针对整个箱体结构以及内部的结构件而言,确保在各种机械载荷和外部因素作用下,动力电池包的特性不会发生大的变化,消除产品潜在的安全风险。需要考虑的因素包括:
4) 功能安全
功能安全是针对电池管理系统(BMS)而言的,要确保电池管理系统在任何一个随机故障、系统故障或共因失效下,都不会导致安全系统的故障,从而引起人员的伤亡、环境的破坏、设备财产的损失;也就是BMS的安全保护功能无论在正常情况下或者有特定故障存在的情况下都应确保正常发挥作用。
上面举过1个例子,如果温度检测功能失效,那么是否有机制可以确保动力电池系统不会发生过热或热失控风险,这就是功能安全要解决的问题。