在化学储能技术中,铅酸电池是比较成熟的技术,具有价格低廉、安全可靠等优点,但其循环寿命短、不可深度放电、运行和维护费用高等问题,使铅酸电池只能运行在浅充浅放或备用的工况,主要作为电力系统备用电源使用。铅炭电池是对传统铅酸的电极进行改良,一定程度提高了电池充放电寿命,用于电力系统备用和短时功率型工况。钠硫电池是以金属钠和液态硫为活性物质,工作在300℃的高温型蓄电池,具有储能密度高、转化效率高等优点,适用于电力系统调峰和调频应用。目前钠硫电池累计装机约304MW,但2011年两起着火爆炸事件使用户关注其安全性的隐患。锂电池具有高比功率和高转化效率的优点,特别适用于电动汽车等移动式储能方式,近年来在电力系统备用电源及电网调频等方面的应用也备受关注。液流电池近些年发展迅速,其安全性好、寿命长、系统设计灵活等优点使其作为电力系统调峰、调频、可再生能源并网、分布式供能等储能装置有广阔的空间。
化学储能技术适合于电力系统分散、灵活的储能布局,目前技术的发展呈百花齐放局面,液流电池、锂电池、钠硫电池、铅炭电池是目前电力系统用储能的主流技术。高安全性、高可靠性、高性价比、高能量效率、长寿命是储能技术的发展方向。
关于储能技术在电力系统中的应用和价值分析
近几年太阳能、风能等可再生能源发电在电力系统中比例逐渐增加,给现有电网的安全运行和高效调度带来了新的挑战,智能电网则成为推动
新能源发展及保障电网安全的重要载体。储能技术尤其大规模储能技术是智能电网在发电、输电、配电、用电四大环节调节电能质量、优化能源效率等主要目标的实现手段,逐渐成为构建智能电网不可或缺的关键环节。(见表2)
可以看出,储能在整个电力系统中的作用体现在“调剂、优化、提高、保障”,即调剂全系统内电能的高效和灵活分配,优化全系统设备的资源配置和利用、提高全系统的运行效率和电能质量、保障全系统稳定和安全运行。其中储能的必要性体现在保障电网安全,实现全系统的能量管理,接纳可再生能源;经济性体现在优化设备的配置、提高全网的效率;技术先进性体现在相比于传统调峰、调频、旋转备用设备来说其快速、准确的响应性和高效率等方面的突出优势。
当前,储能在电力系统的细分领域应用主要包括可再生能源接入储能、电网调峰/调频储能、配电侧分布式储能和用户侧分布式微网储能几种,储能在这些应用中具有直接和间接经济价值。(见表3)
综上,投资者(发电公司、电网运营商、用户侧)衡量储能的价值除考虑各个应用模式下的直接收益外,更多的要衡量储能对全系统内的综合性价值,包括设备投资减少、运营费用降低、发电/用电效率的提高等,另外开放的电力交易也会增大储能的市场竞争力。通过已运行的储能示范项目积累,建立不同模式下系统经济模型,通过产业政策全局把握,推动储能行业的发展。